精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,

使平面AEFD⊥平面EBCF (如图).

(1)当时,求证:BD⊥EG ;

(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;

(3)当取得最大值时,求二面角D-BF-C的余弦值.

                                                                                 

 

【答案】

(1)见解析;(2)有最大值为.(3)二面角的余弦值为-

【解析】本题考查的知识点是二面角的平面角及求法,棱锥的体积,直线与平面垂直的性质,其中(1)的关键是建立坐标系,将线线垂直转化为向量数量积为0,(2)的关键是利用等体积法将三棱锥BCDF的体积,转化为四棱锥ABCF的体积,(3)的关键是求出平面BDF和平面BCF的法向量,将二面角问题转化为向量的夹角.

(1)由AEFD⊥平面EBCF,EF∥BC∥AD,可得AE⊥EF,进而由面面垂直的性质定理得到AE⊥平面EBCF,进而建立空间坐标系E-xyz,求出BD,EG的方向向量,根据两个向量的数量积为0,即可证得BD⊥EG;

(2)根据等体积法,我们可得f(x)=VD-BCF=VA-BFC的解析式,根据二次函数的性质,易求出f(x)有最大值;

(3)根据(2)的结论,我们求出平面BDF和平面BCF的法向量,代入向量夹角公式即可得到二面角D-BF-C的余弦值.

(1)∵平面平面

AE⊥EF,∴AE⊥平面,AE⊥EF,AE⊥BE,

又BE⊥EF,故可如图建立空间坐标系E-xyz.

,又为BC的中点,BC=4,

.则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),

(-2,2,2),(2,2,0),

(-2,2,2)(2,2,0)=0,∴.………………4分

(2)∵AD∥面BFC,所以

=VA-BFC

有最大值为

(3)设平面DBF的法向量为,∵AE=2, B(2,0,0),D(0,2,2),

F(0,3,0),∴(-2,2,2),

,即

,∴

面BCF一个法向量为,则cos<>=

由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为-

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案