精英家教网 > 高中数学 > 题目详情

有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙.已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:

所用的时间(天数)
10
11
12
13
通过公路1的频数
20
40
20
20
通过公路2的频数
10
40
40
10
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.
(Ⅰ)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路1、公路2的“一次性费用”分别为万元、万元(其它费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,销售商将少支付给生产商2万元.如果汽车A、B长期按(Ⅰ)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.(注:毛利润=(销售商支付给生产商的费用)一(一次性费用)) .

(1)汽车B应选择公路2,汽车A应选择公路1
(2)汽车B为生产商获得毛利润更大

解析试题分析:(Ⅰ)频率分布表,如下:

所用的时间(天数)
10
11
12
13
通过公路1的频率




通过公路2的频率




2分
分别表示汽车A在前11天出发选择公路1、2将货物运往城市乙;分别表示汽车B在前12天出发选择公路1、2将货物运往城市乙;

所以汽车A应选择公路1,4分

所以汽车B应选择公路2.6分
(Ⅱ)设表示汽车A选择公路1时,销售商付给生产商的费用,则.
的分布列如下:

42
40
38
36




练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为R上的奇函数.
(1)求的值,并证明当时,函数是R上的增函数;
(2)已知,函数,求的值域;
(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。
(1)试把方盒的容积表示为的函数;
(2)多大时,方盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入固定成本流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求(lg2)2+lg2·lg50+lg25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数 且关于的方程上有两个不相等的实数根.⑴求的解析式.⑵若总有成立,求的最大值.

查看答案和解析>>

同步练习册答案