精英家教网 > 高中数学 > 题目详情

鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

为了楼房每平方米的平均综合费最少,该楼房应建为15层。

解析试题分析:设楼房每平方米的平均综合费为元,则
 3分
方法一: ,   5分 
 得   7分
 时, ;当 时,,
因此 当时,取最小值 10分
(方法二:, 8分
当且仅当时成立,即时, 10分)

答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。 12分
考点:本题考查了函数的实际运用
点评:与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题。解答这类问题的关键是确切建立相应的函数解析式,然后应用函数、方程和不等式的有关知识加以综合解答。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2013年,首都北京经历了59年来雾霾天气最多的一个月。经气象局统计,北京市从1月1日至1月30日这30天里有26天出现雾霾天气。《环境空气质量指数(AQI)技术规定(试行)》将空气质量指数分为六级:其中,中度污染(四级),指数为151—200;重度污染(五级),指数为201—300;严重污染(六级),指数大于300. 下面表1是该观测点记录的4天里,AQI指数与当天的空气水平可见度(千米)的情况,表2是某气象观测点记录的北京1月1日到1月30日AQI指数频数统计结果,
表1:AQI指数与当天的空气水平可见度(千米)情况

AQI指数




空气可见度(千米)




表2:北京1月1日到1月30日AQI指数频数统计
AQI指数





频数
3
6
12
6
3
(Ⅰ)设变量,根据表1的数据,求出关于的线性回归方程;
(Ⅱ)根据表2估计这30天AQI指数的平均值.
(用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙.已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:

所用的时间(天数)
10
11
12
13
通过公路1的频数
20
40
20
20
通过公路2的频数
10
40
40
10
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.
(Ⅰ)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路1、公路2的“一次性费用”分别为万元、万元(其它费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,销售商将少支付给生产商2万元.如果汽车A、B长期按(Ⅰ)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.(注:毛利润=(销售商支付给生产商的费用)一(一次性费用)) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(1)求m的值;
(2)判断上的单调性并加以证明;
(3)当的值域是(1,+),求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某医药研究所开发一种新药,在实验药效时发现:如果成人按规定剂量服用,那么服药后每毫升血液中的含药量(微克)与时间(小时)之间满足
其对应曲线(如图所示)过点.

(1)试求药量峰值(的最大值)与达峰时间(取最大值时对应的值);
(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效,那么成人按规定剂量服用该药一次后能维持多长的有效时间?(精确到0.01小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 是定义在  上的增函数,且对任意的都满足 .
(Ⅰ)求的值;   (Ⅱ)若,证明
(Ⅲ)若,解不等式 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
(1)
(2)已知,且,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设计一副宣传画,要求画面积为4840,画面的宽与高的比为,画面的上,下各留8空白,左右各留5空白,怎样确定画面的高于宽尺寸,能使宣传画所用纸张面积最小?

查看答案和解析>>

同步练习册答案