精英家教网 > 高中数学 > 题目详情

已知函数

(1)求m的值;
(2)判断上的单调性并加以证明;
(3)当的值域是(1,+),求a的值。

(1)
(2)上是减函数,当时,上是增函数。
(3)

解析试题分析:解:(1)
在其定义域内恒成立,

恒成立,
(舍去),

(2)由(1)得
任取









上是减函数,当时,
上是增函数。
(3)当时,上为减函数,要使上值域为(1,+),即
上是减函数,
所以
所以,即满足条件,所以
考点:复合函数的性质
点评:主要是考查了复合函数的奇偶性和单调性的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求不等式的解集; (2)若的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。
(1)试把方盒的容积表示为的函数;
(2)多大时,方盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求(lg2)2+lg2·lg50+lg25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

查看答案和解析>>

同步练习册答案