精英家教网 > 高中数学 > 题目详情

已知 是定义在  上的增函数,且对任意的都满足 .
(Ⅰ)求的值;   (Ⅱ)若,证明
(Ⅲ)若,解不等式 .

(Ⅰ)0,(Ⅱ)对任意的,据已知条件有
. (Ⅲ)

解析试题分析:(Ⅰ)在已知等式中,令.     3分
(Ⅱ)对任意的,据已知条件有,即.         6分
(Ⅲ)因为的定义域是由(Ⅱ)的结论可知,所以不等式可化为,  9分
又因为函数在上是增函数,上式又可化为
,解得
所以,原不等式的解集为.              12分
考点:本题考查了抽象函数的求值及不等式
点评:对于抽象函数满足的关系式问题,应将所给的关系式看作是给定的运算法则,对某些变量进行适当的赋值,并且变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数是定义域为R上的奇函数.
(1)求的值,并证明当时,函数是R上的增函数;
(2)已知,函数,求的值域;
(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求(lg2)2+lg2·lg50+lg25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数有两个零点,且最小值是,函数的图象关于原点对称;
(1)求的解析式;
(2)若在区间上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)设是定义在实数集R上的函数,满足,且对任意实数a,b有
(Ⅱ)设函数满足

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数 且关于的方程上有两个不相等的实数根.⑴求的解析式.⑵若总有成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知关于x的方程x2+(m-3)x+m=0
(1)若此方程有实数根,求实数m的取值范围.
(2)若此方程的两实数根之差的绝对值小于,求实数m的取值范围.

查看答案和解析>>

同步练习册答案