精英家教网 > 高中数学 > 题目详情

已知中心在原点,左、右顶点A1、A2x轴上,离心率为的双曲线C经过点P(6,6),动直线l经过△A1PA2的重心G与双曲线C交于不同两点M、N,Q为线段MN的中点。

(1)求双曲线C的标准方程

(2)当直线l的斜率为何值时,

(1)

(2)


解析:

本小题考查双曲线标准议程中各量之间关系,以及直线与双曲线的位置关系。

(1)设双曲线C的方程为

 

②②

 
又P(6,6)在双曲线C上,

由①、②解得

所以双曲线C的方程为

(2)由双曲线C的方程可得

所以△A1PA2的重点G(2,2)

设直线l的方程为代入C的方程,整理得

③③②

 

整理得

④③②

 
解得

由③,可得

⑤③②

 
解得

由④、⑤,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点、焦点在x轴上的椭圆的离心率是
3
2
,椭圆上任意一点到两个焦点距离之和为4.
(1)求椭圆标准方程;
(2)设椭圆长轴的左端点为A,P是椭圆上且位于第一象限的任意一点,AB∥OP,点B在椭圆上,R为直线AB与y轴的交点,证明:
AB
AR
=2
OP
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O、焦点在x轴上的椭圆C过点M(2,1),离心率为
3
2
.如图,平行于OM的直线l交椭圆C于不同的两点A,B.
(1)当直线l经过椭圆C的左焦点时,求直线l的方程;
(2)证明:直线MA,MB与x轴总围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O,焦点在x轴上的椭圆E过点(0,1),离心率为
2
2

(I)求椭圆E的方程;
(II)若直线l过椭圆E的左焦点F,且与椭圆E交于A、B两点,若△OAB的面积为
2
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,左、右顶点A1、A2x轴上,离心率为的双曲线C经过点P(6,6),动直线l经过△A1PA2的重心G与双曲线C交于不同两点M、N,Q为线段MN的中点。

(1)求双曲线C的标准方程。

(2)当直线l的斜率为何值时,

查看答案和解析>>

同步练习册答案