精英家教网 > 高中数学 > 题目详情
(2012•卢湾区一模)若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=
-
1
2
-
1
2
分析:由函数f(x)=ax+b的零点为x=2,可得 2a+b=0,令g(x)=0,可得 x=0,或x=-
1
2
,由此得出结论.
解答:解:∵函数f(x)=ax+b的零点为x=2,∴2a+b=0,即 b=-2a.
∴函数g(x)=bx2-ax=-2ax2-ax=ax(-2x-1),令g(x)=0,可得 x=0,或x=-
1
2

故它的零点为 x=0和x=-
1
2

故答案为-
1
2
点评:本题主要考查函数的零点的定义,求得 2a+b=0,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•卢湾区一模)不等式x2+x+1<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)函数y=
12
lnx
(x>0)的反函数为
y=e2x(x∈R)
y=e2x(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若集合A={x|0≤x≤5,x∈Z},B={x|x=
k2
,k∈A
},则A∩B=
{0,1,2}
{0,1,2}
(用列举法表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知二元一次方程组
a1x+b1y=c1
a2x+b2y=c2
,若记
a
=
a1 
a2 
b
=( 
b1 
b2 
c
=
c1 
c2 
,则该方程组存在唯一解的条件为
a
b
不平行
a
b
不平行
(用
a
b
c
表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若(1+ax)5=1+10x+bx2+…+a5x5,则b=
40
40

查看答案和解析>>

同步练习册答案