精英家教网 > 高中数学 > 题目详情
在三棱锥A-BCD中,AB=4,CD=2,且异面直线AB、CD所成的角为60°,若M、N分别是AD、BC的中点,则MN=
3
7
3
7
分析:取AC的中点P,连接PM,PN,根据AB=4,CD=2,异面直线AB、CD所成的角为60°,利用三角形中位线定理求出PM,PN,进而利用余弦定理,可求出MN长.
解答:解:取AC的中点P连接PM,PN,

在△ABC中,PN∥AB且PN=
1
2
AB=2
在△ACD中,PM∥CD且PM=
1
2
CD=1
∵异面直线AB、CD所成的角为60°,
故∠NPM=60°或∠NPM=120°
当∠NPM=60°时,MN=
22+12-2•2•1•
1
2
=
3

当∠NPM=120°时,MN=
22+12+2•2•1•
1
2
=
7

故MN=
3
,或MN=
7

故答案为:
3
7
点评:本题主要考查了异面直线所成的角,空间中的线面关系,解三角形等基础知识,考查空间想象能力和思维能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,DA,DB,DC两两垂直,且长度均为1,E为BC中点,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•渭南三模)在三棱锥A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求证:DE⊥平面ABC;
(Ⅱ)求平面BAC与平面DAC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜
边,且AD=
3
,BD=CD=1,另一个侧面ABC是正三角形.
(1)当正视图方向与向量
CD
的方向相同时,画出三棱锥A-BCD的三视图;(要求标出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在线段AC上是否存在一点E,使ED与平面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.
(1)求证:四边形MNPQ为平行四边形;
(2)试在直线AC上找一点F,使得MF⊥AD.

查看答案和解析>>

同步练习册答案