精英家教网 > 高中数学 > 题目详情
已知函数f(x)是正比例函数,g(x)是反比例函数,且f(1)=1,g(1)=1,
(1)求函数f(x)和g(x);
(2)判断函数F(x)=f(x)+g(x)在[1,2]上的单调性,并证明;
(3)求函数F(x)在[1,2]上的值域.
(1)∵函数f(x)是正比例函数,g(x)是反比例函数,
∴设f(x)=k1x,k1≠0,g(x)=
k2
x
,k2≠0,
∵f(1)=1,g(1)=1,
∴k1=1,k2=1,
∴f(x)=x,g(x)=
1
x

(2)∵F(x)=f(x)+g(x),
∴由(1)知F(x)=x+
1
x
.它在[1,2]上的单调递增.证明如下:
在[1,2]上任取x1,x2,令x1<x2
F(x1)-F(x2)=(x1+
1
x1
)-(x2+
1
x2

=(x1-x2)+(
1
x1
-
1
x2

=(x1-x2)+
x2-x1
x1x2

=(x1-x2)(1-
1
x1x2
),
∵1≤x1<x2≤2,
∴x1-x2<0,1-
1
x1x2
>0,
∴F(x1)-F(x2)=(x1-x2)(1-
1
x1x2
)<0,
∴函数F(x)=f(x)+g(x)在[1,2]上的单调递增.
(3)∵函数F(x)=x+
1
x
在[1,2]上的单调递增,
∴f(x)min=f(1)=1+1=2,
f(x)max=f(2)=2+
1
2
=
5
2

故函数F(x)在[1,2]上的值域为[2,
5
2
].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的有
 
(把所有正确的序号都填上).
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④已知函数f′(x)是函数.f(x)在R上的导函数,若f(x)是偶函数,则f′(x)是奇函数;
1
-1
1-x2
dx
等于
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知函数f(x)是定义在R上的函数,其最小正周期为3,且x∈(0,3)时,f(x)=log2(3x+1),则f(2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)已知函数f(x)是定义在R上的单调增函数且为奇函数,数列{an}是等差数列,a1007>0,则f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2013)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
3
2
,0)
时,f(x)=log
1
2
(1-x)
,则f(2010)+f(2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为4,且x∈(0,2)时,f(x)=log2(3x+1),则f(2011)=
-2
-2

查看答案和解析>>

同步练习册答案