精英家教网 > 高中数学 > 题目详情
(2013•青浦区一模)已知函数f(x)是定义在R上的单调增函数且为奇函数,数列{an}是等差数列,a1007>0,则f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2013)的值(  )
分析:由题意可得f(0)=0,且当x>0,f(0)>0; 当x<0,f(0)<0.由数列{an}是等差数列,a1007>0,可得f(a1007)>0  可得 a1+a2013=2a1007>0,故f(a1)+f(a2013)>0,同理可得,f(a2)+f(a2012)>0,f(a3)+f(a2011)>0,…,从而得到所求式子的符号.
解答:解:∵函数f(x)是R上的奇函数且是增函数数列,∴f(0)=0,且当x>0,f(0)>0; 当x<0,f(0)<0.
∵数列{an}是等差数列,a1007>0,故f(a1007)>0.
再根据 a1+a2013=2a1007>0,∴f(a1)+f(a2013)>0.
同理可得,f(a2)+f(a2012)>0,f(a3)+f(a2011)>0,…,
∴f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2013)>0,
故选A.
点评:本题主要考查等差数列的性质,函数的奇偶性和单调性的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青浦区一模)如果执行如图的框图,输入N=5,则输出的数等于
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)已
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的最小正周期;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(x)≤f(
A
2
)
对所有的x∈R恒成立,且a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)已知集合A={x|x≤2},B={x|x≥a},且A∪B=R,则实数a的取值范围是
a≤2
a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)若
.
135
a2b2c2
246
.
=a2A2+b2B2+c2C2,则C2化简后的最后结果等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)(文)已知正三棱柱的底面正三角形边长为2,侧棱长为3,则它的体积V=
3
3
3
3

查看答案和解析>>

同步练习册答案