【题目】如图,焦点在
轴上的椭圆
与焦点在
轴上的椭圆
都过点
,中心都在坐标原点,且椭圆
与
的离心率均为
.
(Ⅰ)求椭圆
与椭圆
的标准方程;
(Ⅱ)过点M的互相垂直的两直线分别与
,
交于点A,B(点A、B不同于点M),当
的面积取最大值时,求两直线MA,MB斜率的比值.
![]()
科目:高中数学 来源: 题型:
【题目】如图是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图一是第1代“勾股树”,重复图一的作法,得到图二为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n代“勾股树”所有正方形的面积的和为( )
![]()
![]()
![]()
A. nB.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
⊥底面
,
⊥
,
∥
,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
其中P,M是非空数集.记f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);
(Ⅱ)若P∩M=,且f(x)是定义在R上的增函数,求集合P,M;
(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等腰直角三角形
的斜边AB为正四面体
侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:
![]()
(1)四面体E
BCD的体积有最大值和最小值;
(2)存在某个位置,使得
;
(3)设二面角
的平面角为
,则
;
(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.
其中,正确说法的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在[0.1,0.3)的脐橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,经统计得到如图所示频率分布直方图
![]()
(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.
(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在[0.5,0.6)内的脐橙个数,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】条形码
是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是“
”通用代码,它是由从左到右排列的13个数字(用
表示)组成,其中
是校验码,用来校验前12个数字代码的正确性.下面的框图是计算第13位校验码的程序框图,框图中符号
表示不超过
的最大整数(例如
).现有一条形码如图(1)所示
,其中第6个数被污损, 那么这个被污损数字
是( )
![]()
![]()
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x,g(x)=x-4,则下列结论正确的是( )
A.若h(x)=f(x)g(x),则函数h(x)的最小值为4
B.若h(x)=f(x)|g(x)|,则函数h(x)的值域为R
C.若h(x)=|f(x)|-|g(x)|,则函数h(x)有且仅有一个零点
D.若h(x)=|f(x)|-|g(x)|,则|h(x)|≤4恒成立
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com