分析:(1))利用向量的坐标运算公式可求得
•=sin2x,又x∈[0,
],从而可求
•的取值范围;
(2)由
+=(cos+sinx,sinx+cosx)由向量模的概念结合辅助角公式即可证得|
+|=2sin(x+
).
(3)将
f(x)=•-|+|化简为:f(x)═2sinxcosx-2(sinx+cosx),
解法1:令t=sinx+cosx,sinx•cosx=
(1≤t≤
),y=t
2-1-2t=(t-1)
2-2取值范围可求.
解法2:f(x)=sin2x-2
sin(x+
)=
2sin2(x+)-2sin(x+)-1,求得sin(x+
)的范围即可.
解答:解:(1)∵
•=sinx•cosx+sinx•cosx=2sinx•cosx=sin2x (2′)
∵x∈[0,
],
∴2x∈[0,π]
∴
•∈[0,1](4′)
(2)证明:∵
+=(cos+sinx,sinx+cosx)
∴|
+
|=
(6')
=
=2|sin(x+)|∵x∈[0,
],
∴x+
∈[
,
],
∴sin(x+
)>0,
∴
2|sin(x+)|=2sin(x+
),
∴|
+
|=2sin(x+
).(8')
(3)∵x∈[0,
],
∴x+
∈[
,
]
∴f(x)=
•-|+|=
sin2x-2sin(x+)=2sinxcosx-2(sinx+cosx)(9')
解法1:令t=sinx+cosx
∴
sinx•cosx= (1≤t≤)
∴y=t
2-1-2t(10')
=(t-1)
2-2
∴y∈[-2,
1-2](12')
解法2:f(x)=sin2x-2
sin(x+)(9')
=
-cos[2(x+)]-2sin(x+)=
2sin2(x+)-2sin(x+)-1(10')
∵
≤sin(x+)≤1
∴f(x)∈[-2,
1-2](12')
点评:本题考查正弦函数的定义域和值域,着重考查了平面向量数量积的运算,三角函数的化简求值与二次函数在闭区间上的最值,综合性强,难度较大,属于难题.