精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosx,sinx),
b
=(sinx,cosx)
,且x∈[0,
π
2
]

(1)求
a
b
的取值范围;
(2)求证|
a
+
b
|=2sin(x+
π
4
)

(3)求函数f(x)=
a
b
-
2
|
a
+
b
|
的取值范围.
分析:(1))利用向量的坐标运算公式可求得
a
b
=sin2x,又x∈[0,
π
2
],从而可求
a
b
的取值范围;
(2)由
a
+
b
=(cos+sinx,sinx+cosx)由向量模的概念结合辅助角公式即可证得|
a
+
b
|=2sin(x+
π
4
).
(3)将f(x)=
a
b
-
2
|
a
+
b
|
化简为:f(x)═2sinxcosx-2(sinx+cosx),
解法1:令t=sinx+cosx,sinx•cosx=
t2-1
2
(1≤t≤
2
),y=t2-1-2t=(t-1)2-2取值范围可求.
解法2:f(x)=sin2x-2
2
sin(x+
π
4
)=2sin2(x+
π
4
)-2
2
sin(x+
π
4
)
-1,求得sin(x+
π
4
)的范围即可.
解答:解:(1)∵
a
b
=sinx•cosx+sinx•cosx=2sinx•cosx=sin2x  (2′)
∵x∈[0,
π
2
],
∴2x∈[0,π]
a
b
∈[0,1](4′)
(2)证明:∵
a
+
b
=(cos+sinx,sinx+cosx)
∴|
a
+
b
|=
2(cosx+sinx)2
(6')
=
2[
2
sin(x+
π
4
)]
2
=2|sin(x+
π
4
)|

∵x∈[0,
π
2
],
∴x+
π
4
∈[
π
4
4
],
∴sin(x+
π
4
)>0,
2|sin(x+
π
4
)|
=2sin(x+
π
4
),
∴|
a
+
b
|=2sin(x+
π
4
).(8')
(3)∵x∈[0,
π
2
],
∴x+
π
4
∈[
π
4
4
]
∴f(x)=
a
b
-
2
|
a
+
b
|

=sin2x-2
2
sin(x+
π
4
)

=2sinxcosx-2(sinx+cosx)(9')
解法1:令t=sinx+cosx
sinx•cosx=
t2-1
2
   (1≤t≤
2

∴y=t2-1-2t(10')
=(t-1)2-2
∴y∈[-2,1-2
2
]
(12')
解法2:f(x)=sin2x-2
2
sin(x+
π
4
)
(9')
=-cos[2(x+
π
4
)]-2
2
sin(x+
π
4
)

=2sin2(x+
π
4
)-2
2
sin(x+
π
4
)
-1(10')
2
2
≤sin(x+
π
4
)
≤1
∴f(x)∈[-2,1-2
2
](12')
点评:本题考查正弦函数的定义域和值域,着重考查了平面向量数量积的运算,三角函数的化简求值与二次函数在闭区间上的最值,综合性强,难度较大,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(-cosα,1+sinα)
b
=(2sin2
α
2
,sinα)

(Ⅰ)若|
a
+
b
|=
3
,求sin2α的值;
(Ⅱ)设
c
=(cosα,2)
,求(
a
+
c
)•
b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx-sinωx,sinωx)
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函数f(x)=
a
b
(λ为常数)的最小正周期为π.
(Ⅰ)求函数y=f(x)的图象的对称轴;
(Ⅱ)若函数y=f(x)的图象经过点(
π
4
,0)
,求函数y=f(x)在区间[0,
12
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
θ
2
,sin
θ
2
)
b
=(2,1)
,且
a
b

(1)求tanθ的值;
(2 )求
cos2θ
2
cos(
π
4
+θ)•sinθ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(ωx-
π
6
),  sin(ωx-
π
4
)),  
b
=(sin(
2
3
π-ωx), sin(ωx+
π
4
))
(其中ω>0).若函数f(x)=2
a
b
-1
的图象相邻对称轴间距离为
π
2

(Ⅰ)求ω的值;
(Ⅱ)求f(x)在[-
π
12
,  
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),
b=
(cos2θ-1,sin2θ),
c
=(cos2θ,sin2θ-
3
)
.其中θ≠kπ,k∈Z.
(1)求证:
a
b

(2)设f(θ)=
a
c
,且θ∈(0,π),求f(θ)
的值域.

查看答案和解析>>

同步练习册答案