分析 利用数量积的性质和向量的平行四边形法则即可得出.
解答 解:如图,![]()
$|\overrightarrow{BC}{|}^{2}=(\overrightarrow{BC})^{2}=(\overrightarrow{AC}-\overrightarrow{AB})^{2}$=$|\overrightarrow{AC}{|}^{2}-2\overrightarrow{AC}•\overrightarrow{AB}+|\overrightarrow{AB}{|}^{2}=64$,
∴$\overrightarrow{AC}{|}^{2}+|\overrightarrow{BC}{|}^{2}=46$$|\overrightarrow{AC}{|}^{2}+|\overrightarrow{BC}{|}^{2}=46$.
∴$|\overrightarrow{AD}{|}^{2}=\frac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})^{2}$=$\frac{1}{4}(|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AC}{|}^{2}+2\overrightarrow{AB}•\overrightarrow{AC})$=$\frac{1}{4}(46-18)=7$.
∴$|{\overrightarrow{AD}}|$=$\sqrt{7}$.
故答案为:$\sqrt{7}$.
点评 本题考查了数量积的性质和向量的平行四边形法则,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$π | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}π$ | D. | $\frac{4}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{6}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x1)-f(x2)>0 | B. | f(x1)-f(x3)>0 | C. | f(x1)-f(x2)<0 | D. | f(x1)-f(x3)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com