精英家教网 > 高中数学 > 题目详情
(2010•中山一模)
0
-1
(x-ex)dx
=(  )
分析:先求出被积函数x-ex的原函数,然后根据定积分的定义求出所求即可.
解答:解:(
1
2
x2-ex
)′=x-ex
0
-1
(x-ex)dx
=(
1
2
x2-ex
)|-10=-1-(
1
2
-
1
e
)=-
3
2
+
1
e

故选A.
点评:本题主要考查了定积分的运算,定积分的题目往往先求出被积函数的原函数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•中山一模)已知A、B、C是直线l上的不同的三点,O是直线外一点,向量
OA
OB
OC
满足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,记y=f(x).
(1)求函数y=f(x)的解析式;
(2)若x∈[
1
6
1
3
]
a>ln
1
3
,证明:不等式|a-lnx|>ln[f′(x)-3x]成立;
(3)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案