精英家教网 > 高中数学 > 题目详情
19.若函数f(x+1)的定义域是[-2,2],则函数f(2x-1)+f(2x+1)的定义域是[0,1].

分析 根据复合函数定义域之间的关系进行求解即可

解答 解:∵函数f(x+1)的定义域为[-2,2],
∴-2≤x≤2,
则-1≤x+1≤3,
即函数f(x)的定义域为[-1,3],
由$\left\{\begin{array}{l}-1≤2x-1≤3\\-1≤2x+1≤3\end{array}\right.$,
解得0≤x≤1,
故答案为:[0,1].

点评 本题主要考查函数的定义域的求解,要求熟练掌握复合函数定义域之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知圆C1:x2+y2-4x-4y-1=0,圆C2:x2+y2+2x+8y-8=0,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α,β是方程2x2+2ax+b=0的两根,且α∈[0,1],β∈[1,2],a,b∈R,则$\frac{{5{a^2}+4ab+{b^2}}}{{2{a^2}+ab}}$的范围[2,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={3,|a|},B={a,1},若A∩B={2},则A∪B=(  )
A.{0,1,3}B.{1,2,3}C.{0,1,2,3}D.{1,2,3,-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的方程${({\frac{2}{3}})^x}=\frac{1+a}{1-a}$有负实数根,则a的取值范围是(  )
A.(-1,1)B.(0,1)C.(-1,0)D.$({-\frac{2}{3},\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)对于任意的a,b∈R均有f(a+b)=f(a)+f(b)-1,且当x>0时,f(x)>1成立.
(1)求证为R上的增函数;
(2)若$f({\sqrt{m}})+f({\sqrt{m}•x})>f({{x^2}-1})+1$对一切满足$\frac{1}{16}≤m≤\frac{1}{4}$的m恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条弦的长等于半径,则这条弦所对的圆心角是____弧度.(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列四个命题:①α∈(0,$\frac{π}{2}$)时,sinα+cosα>1;②α∈($\frac{π}{2}$,π)时,若sinα+cosα<0,则|cosα|>|sinα|;③对任意的向量,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;④若$\overrightarrow{a}$≠$\overrightarrow{0}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$,正确的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的前项n和${S_n}=3{n^2}-5n$,则a20的值为112.

查看答案和解析>>

同步练习册答案