精英家教网 > 高中数学 > 题目详情

设数列满足:

(Ⅰ)求的通项公式及前项和

(Ⅱ)已知是等差数列,为前项和,且.求的通项公式,并证明:

 

【答案】

(Ⅰ);(Ⅱ),证明详见解析.

【解析】

试题分析:(Ⅰ)求的通项公式及前项和,由已知,数列是以为首项,为公比等比数列,由等比数列的通项公式及前项和公式可得;(Ⅱ)求的通项公式,由是等差数列,为前项和,且,可设等差数列的公差为,根据已知条件,求出公差的值,从而得到;证明:,由,分母是等差数列连续两项积,像这类数列,求其前项和,常常采用拆项相消法,即,从而解出.

试题解析:(Ⅰ)因为,又,所以,因此是首项为1,公比为3的等比数列,所以

(Ⅱ)设等差数列的公差为,依题意 ,所以,即,故. 由此得,. 所以,  .因此所证不等式成立.                        

考点:等比数列的定义及通项公式,等差数列的通项公式,拆项相消法求数列的前项和,考查学生的运算能力以及转化与化归的能力.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列满足a1=0,an+1=an+
an+
1
4
+
1
4
,令bn=
an+
1
4

(Ⅰ)证明数列{bn}是等差数列,并求数列{bn}的通项公式;
(Ⅱ)若存在m,n∈N*,n≤10使得b6,am,an依次成等比数列,试确定m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列满足:a1=1,an+1=
1
16
(1+4an+
1+24an
)(n∈N*)

(1)求a2,a3
(2)令bn=
1+24an
,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源:2015届广西桂林十八中高二上学期段考文科数学试卷(解析版) 题型:解答题

已知等差数列,公差不为零,,且成等比数列;

⑴求数列的通项公式;

⑵设数列满足,求数列的前项和.

 

查看答案和解析>>

科目:高中数学 来源:2015届江苏省高一下学期期中考试数学试卷(解析版) 题型:解答题

已知函数,为正整数.

(Ⅰ)求的值;

(Ⅱ)数列的通项公式为(),求数列的前项和;

(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.

 

查看答案和解析>>

同步练习册答案