| A. | [-1,+∞) | B. | [-1,2] | C. | (0,2] | D. | (1,$\sqrt{2}$+$\frac{1}{2}$] |
分析 利用同角三角函数的基本关系,正弦函数的定义域和值域求得t=sinx+cosx 的范围,再利用二次函数的性质求得y的最值,可得y的值域.
解答 解:∵0<x≤$\frac{π}{3}$,∴x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{7π}{12}$],∴sin(x+$\frac{π}{4}$)∈($\frac{\sqrt{2}}{2}$,1],
令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈(1,$\sqrt{2}$],
则t2=1+2sinxcosx,∴sinx•cosx=$\frac{{t}^{2}-1}{2}$,y=t+$\frac{{t}^{2}-1}{2}$=$\frac{1}{2}$•(t+1)2-1,
故当t=1时,函数y取得最小值为1,当t=$\sqrt{2}$时,函数y取得最小值为2+2$\sqrt{2}$,
故函数的值域为 (1,2+2$\sqrt{2}$],
故选:D.
点评 本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -3 | C. | -2 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com