精英家教网 > 高中数学 > 题目详情

设函数(为自然对数的底数),).

(1)证明:

(2)当时,比较的大小,并说明理由;

(3)证明:).

【考查目的】本题考查函数与导数、数学归纳法、不等式等基础知识,考查抽象概括能力、推理论证能、运算求解能力和创新意识,考查函数与方程思想、转化与化归思想

解:(1)证明:设,所以…………1分

时,,当时,,当时,

即函数上单调递减,在上单调递增,在处取得唯一极小值,…2分

因为,所以对任意实数均有 .即

所以………………………………………………………………3分

(2)解:当时,.用数学归纳法证明如下:

①当时,由(1)知

②假设当)时,对任意均有,………………5分

因为对任意的正实数

由归纳假设知,.………………………………………6分

上为增函数,亦即

因为,所以.从而对任意,有

即对任意,有.这就是说,当时,对任意,也有.由①、②知,当时,都有.……………8分

(2)证明1:先证对任意正整数

由(2)知,当时,对任意正整数,都有.令,得.所以.…………………………………………………………………9分

再证对任意正整数

要证明上式,只需证明对任意正整数,不等式成立.

即要证明对任意正整数,不等式(*)成立……………………10分

以下分别用数学归纳法和基本不等式法证明不等式(*):

方法1(数学归纳法):

①当时,成立,所以不等式(*)成立.

②假设当)时,不等式(*)成立,即.……………11分

因为 

所以.………………………………………13分

这说明当时,不等式(*)也成立.由①、②知,对任意正整数,不等式(*)都成立.

综上可知,对任意正整数成立  …14分

练习册系列答案
相关习题

科目:高中数学 来源:黑龙江省鹤岗一中2011-2012学年高二下学期期中考试数学(理)试题 题型:013

设函数(e为自然对数的底数),则

[  ]

A.

B.

C.1

D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省仙桃市高三上学期第三次考试文科数学试卷(解析版) 题型:解答题

设函数=为自然对数的底数),,记

(1)的导函数,判断函数的单调性,并加以证明;

(2)若函数=0有两个零点,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(普通学校) 题型:解答题

.(本题满分14分)

    设函数=为自然对数的底数),,记

(Ⅰ)的导函数,判断函数的单调性,并加以证明;

(Ⅱ)若函数=0有两个零点,求实数的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(非一级校) 题型:解答题

.(本题满分14分)

    设函数=为自然对数的底数),,记

(Ⅰ)的导函数,判断函数的单调性,并加以证明;

(Ⅱ)若函数=0有两个零点,求实数的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

    设函数=为自然对数的底数),,记

(Ⅰ)的导函数,判断函数的单调性,并加以证明;

(Ⅱ)若函数=0有两个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案