精英家教网 > 高中数学 > 题目详情
已知函数f (x)定义在[0,6]上,且在[0,3]上是正比例函数,在[3,6]上为二次函数,并且x∈[3,6]时,f (x)≤f (5)=3,f (6)=2,求函数f (x)的解析式.
∵函数f(x)在[0,3]上是正比例函数,在[3,6]上为二次函数
∴可设f(x)=
kx,,x∈[0,3]
a(x-m)2+n,x∈[3,6].
(4分)
又∵x∈[3,6]时,f(x)≤f(5)=3,f(6)=2,
∴a<0,m=5,n=3,且2=a(6-5)2+3
∴a=-1(8分)
∴x∈[3,6]时,f(x)=-(x-5)2+3
∴f(3)=-1(10分)
又∵f(3)=3k,
∴3k=-1即k=-
1
3
(12分)
f(x)=
1
3
x,,x∈[0,3]
-(x-5)2+3,x∈[3,6].
(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南)已知函数f(x)=eax-x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为C,若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,求证:
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-|2x-a|,a∈R.
(I)当a=5时,求不等式f(x)≥3x-2的解集.
(II)求证:函数f(x)=1-|2x-a|的最大值恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果对任意x∈(1,2],f'(x)>a2恒成立,求实数a的取值范围;
(2)设实数f(x)的两个极值点分别为x1x2判断①x1+x2+a②x12+x22+a2③x13+x23+a3是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数g(a)并求出g(a)的最小值;
(3)对于(2)中的g(a),设H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,试比较|H(m)-H(n)|与|em-en|(e为自然对数的底)的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案