精英家教网 > 高中数学 > 题目详情

【题目】已知对任意实数x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

【答案】B
【解析】解:∵对任意实数x,有f(﹣x)=﹣f(x),g(﹣x)=g(x), ∴f(x)为奇函数;g(x)为偶函数,
∵x>0时,f′(x)>0,g′(x)>0,
∴f(x)在(0,+∞)上为增函数;g(x)在(0,+∞)上为增函数,
∴f(x)在(﹣∞,0)上为增函数;g(x)在(﹣∞,0)上为减函数,
∴f′(x)>0;g′(x)<0,
故选:B.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知
(1)求tanA;
(2)若 ,且 ,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=ax , y=xb , y=logcx的图象如图所示,则a,b,c的大小关系为 . (用“<”号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比,已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:

(Ⅰ)分别写出两类产品的收益y(万元)与投资额x(万元)的函数关系;
(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有两个零点.
(1)若函数的两个零点是 ,求 的值;
(2)若函数的两个零点是 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中底面四边形ABCD是正方形,各侧面都是边长为2的正三角形,M是棱PC的中点.建立空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象上所有点向左平行移动 个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,若a2+b2﹣ab=1,则ab的取值范围是

查看答案和解析>>

同步练习册答案