【题目】某同学在利用“五点法”作函数f(x)=Asin(ωx+)+t(其中A>0, )的图象时,列出了如表格中的部分数据.
x |
|
|
| ||
ωx+ | 0 |
| π |
| 2π |
f(x) | 2 | 6 | 2 | ﹣2 | 2 |
(1)请将表格补充完整,并写出f(x)的解析式.
(2)若 ,求f(x)的最大值与最小值.
科目:高中数学 来源: 题型:
【题目】四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.
(1)求证:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx图象与直线x﹣y﹣4=0相切于(1,f(1))
(1)求实数a,b的值;
(2)若方程f(x)=m﹣7x有三个解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若将函数y=2sin2x的图象向左平移 个单位长度,则平移后的图象的对称轴为( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,BC= ,AB=CC1=2,∠BCC1= ,点E在棱BB1上.
(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1 , 试确定λ的值,使得二面角A﹣C1E﹣C的余弦值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx在x=1处取得极值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)对于任意的x∈(0,+∞)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱锥A﹣BCD的侧棱长为2,底面BCD的边长为2 ,E,分别为BC,BD的中点,则三棱锥A﹣BEF的外接球的半径R= , 内切球半径r= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com