精英家教网 > 高中数学 > 题目详情

若正四棱柱的底面边长为2,高为4,则异面直线所成角的正切值是_________________.

    

解析试题分析:根据正四棱柱的几何特征,我们易根据AD∥BC,得到∠D1BC即为异面直线BD1与AD所成角,根据已知中正四棱柱ABCD-A1B1C1D1的底面边长为2,高为 ,求出△D1BC中各边的长,解△D1BC即可得到答案.
∵AD∥BC∴∠D1BC即为异面直线BD1与AD所成角连接D1C,在△D1BC中,∵正四棱柱ABCD-A1B1C1D1的底面边长为2,高为4∴D1B=2,BC=2,D1C=∴cos∠D1BC=,故异面直线BD1与AD所成角的正切值为
故答案为
考点:本题主要是考查查的知识点是异面直线及其所成的角。
点评:解决该试题的关键是根据已知条件确定找到两条异面直线夹角,易根据AD∥BC,得到∠D1BC即为异面直线BD1与AD所成角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

如图,已知六棱锥PABCDEF的底面是正六边形,平面ABC,给出下列结论:①;②平面平面PBC;③直线平面PAE;④;⑤直线PD与平面PAB所成角的余弦值为
其中正确的有                (把所有正确的序号都填上)。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为________. 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;②经过空间一点一定可作一平面与两异面直线都平行;③已知平面,直线,若,则;④四个侧面两两全等的四棱柱为直四棱柱;⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.其中正确命题的序号是      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知直线m、n及平面,其中m∥n,那么在平面内到两条直线m、n距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是__________。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知两条不同直线,两个不同平面,给出下列命题:
①若垂直于内的两条相交直线,则
②若,则平行于内的所有直线;
③若,则
④若,则
⑤若,则
其中正确命题的序号是                 .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则对角线AC与对角线BF对所成角的余弦值是__________.             .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,点P在正方体的面对角线上运动,则下列四个命题:①三棱锥的体积不变; ②∥面; ③; ④面。其中正确的命题的序号是_______________(写出所有你认为正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在长方体ABCD-A1B1C1D1中,经过其对角线BD1的平面分别与棱AA1、CC1相交于E,F两点,则四边形EBFD1的形状为_______                

查看答案和解析>>

同步练习册答案