关于的方程,给出下列四个命题:
①存在实数,使得方程恰有2个不同实根; ②存在实数,使得方程恰有4个不同实根;
③存在实数,使得方程恰有5个不同实根; ④存在实数,使得方程恰有8个不同实根;
其中假命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
A
解析试题分析:关于x的方程可化为(1)
或(-1<x<1)(2)
①当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根;
②当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根;
③当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根;
④当k=时,方程(1)的解为±,±,方程(2)的解为±,±,
即原方程恰有8个不同的实根.
∴四个命题都是真命题.故选A。
考点:本题主要考查函数方程思想,分类讨论思想。
点评:中档题,通过讨论x的范围,将方程中的绝对值符号去掉,这是一般思路。而k实施分类讨论又是基于函数值域。
科目:高中数学 来源: 题型:单选题
如图,不规则四边形ABCD中:AB和CD 是线段,AD和BC是圆弧,直线l⊥AB于E,当l从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设AE=x,左侧部分面积为y,则y关于x的大致图象为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com