精英家教网 > 高中数学 > 题目详情
18.已知命题P:?x>0,总有2x>1,则¬P为(  )
A.?x>0,总有2x≤1B.?x≤0,总有2x≤1C.?x≤0,使得2x≤1D.?x>0,使得2x≤1

分析 由已知中的原命题,结合全称命题否定的定义,可得答案.

解答 解:命题P:?x>0,总有2x>1,则¬P为?x>0,总有2x≤1,
故选:D

点评 本题考查的知识点是全称命题的否定,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|x-a|+|x-5|,x∈R.
(1)当a=2时,求不等式f(x)≥5的解集;
(2)已知a<5,若关于x的方程f(x)=ax有且只有两个实数解,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx的图象在点(1,0)处的切线方程是x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),圆F:(x-c)2+y2=c2,直线l与双曲线C的一条渐近线垂直且在x轴上的截距为$\frac{2}{3}$a,若圆F被直线l所截得的弦长为$\frac{4\sqrt{2}}{3}$c,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$若f(a)=f(b)=c,f′(b)<0,则a,b,c的大小关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合$A=\{x\left|{\frac{x-5}{x+1}≤0}\right.\}$,B={x|x2-2x-m<0}.
(1)当m=3时,求(∁RB)∩A;
(2)若A∩B={x|-1<x<4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一张画有直角坐标系的图纸折叠一次,使得点A(0,2)与点B(4,0)重合,若此时点C(7,3)与点D(m,n)重合,则m+n的值为(  )
A.6B.$\frac{31}{2}$C.5D.$\frac{34}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\frac{bx+c}{{a{x^2}+1}}(a,b,c∈R)$是奇函数,且f(-2)≤f(x)≤f(2),则a=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案