精英家教网 > 高中数学 > 题目详情
6.求证:x∈R时,|x-1|≤4|x3-1|.

分析 |x-1|≤4|x3-1||x-1|≤4|(x-1)(x2+x+1)||x-1|≤4|x-1||(x2+x+1)|,分类讨论,即可证明结论.

解答 证明:|x-1|≤4|x3-1||x-1|≤4|(x-1)(x2+x+1)||x-1|≤4|x-1||(x2+x+1)|
x=1时,左式=右式=0,符合题意;
x≠1时,x2+x+1=(x+$\frac{1}{2}$)2+$\frac{3}{4}$>$\frac{1}{4}$,所以4|x-1||(x2+x+1)|>|x-1|;
综上,x∈R时,|x-1|≤4|x3-1|.

点评 本题考查不等式的证明,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求函数f(x)=$\sqrt{21+4x-{x}^{2}}-\frac{lo{g}_{5}(1-x)}{x+1}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\sqrt{3}sinωx+2{cos^2}\frac{ωx}{2}-1(ω>0)$的最小正周期为π.对于函数f(x),下列说法正确的是(  )
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函数
B.图象关于直线$x=\frac{5π}{12}$对称
C.图象关于点$(-\frac{π}{3},0)$对称
D.把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x∈R,则“|x-2|<1”是“x2+x-2>0”的充分不必要条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0且a≠1,证明:am+n+1>am+an(m,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P是双曲线上的点,若它的渐近线上存在一点Q(第一象限内),使得$\overrightarrow{FP}$=3$\overrightarrow{PQ}$,则双曲线离心率的取值范围为(1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设x1,x2为函数f(x)=ax2+(b-1)x+1(a,b∈R,a>0)两个不同零点.
(1)若x1=1,且对任意x∈R,都有f(2-x)=f(2+x),求f(x);
(2)若b=2a-3,则关于x的方程f(x)=|2x-a|+2是否存在负实根?若存在,求出该负根的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\vec a$,$\vec b$满足$|{\vec a}|=2\sqrt{2}|{\vec b}|≠0$,且关于x的函数$f(x)=2{x^3}+3|{\vec a}|{x^2}+6\vec a•\vec bx+7$在实数集R上单调递增,则向量$\vec a$,$\vec b$的夹角的取值范围是(  )
A.$[{0,\left.{\frac{π}{6}}]}\right.$B.$[{0,\left.{\frac{π}{3}}]}\right.$C.$[{0,\left.{\frac{π}{4}}]}\right.$D.$[{\frac{π}{6},\left.{\frac{π}{4}}]}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}的公比q>0,且a1=1,4a3=a2a4
(Ⅰ)求公比q和a3的值;
(Ⅱ)若{an}的前n项和为Sn,求证$\frac{{S}_{n}}{{a}_{n}}$<2.

查看答案和解析>>

同步练习册答案