精英家教网 > 高中数学 > 题目详情
上是减函数,则的最大值是          

试题分析:函数的定义域是,即,而,令,得,因为,所以,函数上是减函数,即恒成立,得恒成立,令,即只要即可,而的最小值,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若是函数的极值点,求曲线在点处的切线方程;
(2)若函数上为单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当为自然对数的底数)时,求的最小值;
(2)讨论函数零点的个数;
(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数,其中常数
(Ⅰ)讨论的单调性;
(Ⅱ)若当x≥0时,>0恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a<x<b时,有(  )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

任何一个三次函数都有对称中心.请你探究函数,猜想它的对称中心为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,①求函数的单调区间;②求函数的图象在点处的切线方程;
(2)若函数既有极大值,又有极小值,且当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则=             

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数的导数。

查看答案和解析>>

同步练习册答案