精英家教网 > 高中数学 > 题目详情
设f(k)是满足不等式log2x+log2(3·2k-1-x)≥2k-1(k∈N*)的自然数x的个数.

(1)求f(k)的表达式;

(2)记Sn=f(1)+f(2)+…+f(n),Pn=n2+n-1,当n≤5时试比较Sn与Pn的大小.

解:(1)由不等式log2x+log2(3·2k-1-x)≥2k-1,得x(3·2k-1-x)≥22k-1,

    解之,得2k-1≤x≤2k,

    故f(k)=2k-2k-1+1=2k-1+1.

    (2)∵Sn=f(1)+f(2)+…+f(n)=1+2+22+23+…+2n-1+n=2n+n-1,

    ∴Sn-Pn=2n+n-1-(n2+n-1)=2n-n2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=a•qx(a,q是正数,q≠1),不等的正整数m、k、h满足k2=mh,试比较[f(m)]
1
m
[f(h)]
1
h
[f(k)]
2
k
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数,现在f(x)=k+2
x+1
是递增闭函数,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:四川省古蔺县中学校2012届高三第一学月能力监测数学试题 题型:013

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数.若f(x)=k-k是递增闭函数,则实数k的取值范围是

[  ]

A.(-∞,0]

B.[2,+∞)

C.(-∞,-2]

D.[-2,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数,现在f(x)=k+2
x+1
是递增闭函数,则实数k的取值范围是(  )
A.(-2,+∞)B.(-∞,1]C.(-2,-1]D.(-2,1)

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省宜昌一中、荆州中学高三(上)联考数学试卷(文科)(解析版) 题型:选择题

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数,现在是递增闭函数,则实数k的取值范围是( )
A.(-2,+∞)
B.(-∞,1]
C.(-2,-1]
D.(-2,1)

查看答案和解析>>

同步练习册答案