精英家教网 > 高中数学 > 题目详情
1.已知等差数列{an}的前n项和为Sn,且a5=1,S5=25.
(1)求 an,Sn
(2)bn=|an|,求数列{bn}的前n项和Tn

分析 (1)等差数列{an},a5=1,S5=25,用a1和a5分别表示S5,解此方程组即可求得a1和d,从而求出an,Sn
(2)当n≤5时,bn=|an|=an=11-2n,当n>5时,bn=|an|=-an=2n-11;从而分类讨论求前n项和.

解答 解:(1)设等差数列的公差为d,
则由题意可得$\left\{\begin{array}{l}{{a}_{1}+4d=1}\\{\frac{1+{a}_{1}}{2}×5=25}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=9}\\{d=-2}\end{array}\right.$,
所以an=9+(n-1)(-2)=11-2n,Sn=9n+$\frac{n(n-1)}{2}$×(-2)=10n-n2
(2)解:当n≤5时,bn=|an|=an=11-2n>0,
则bn=|an|=an=11-2n,
则Tn=$\frac{9+11-2n}{2}$n=(10-n)n;
当n>5时,bn=an=11-2n<0,
则bn=|an|=an=2n-11,
则Tn=|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|+…+|an|
=a1+a2+a3+a4+a5-a6-a7-…-an
=2(a1+a2+a3+a4+a5)-(a1+a2+a3+a4+a5+a6+a7+…+an
=50-(10-n)n
=n2-10n+50.
故Tn=$\left\{\begin{array}{l}{(10-n)n,n≤5}\\{{n}^{2}-10n+50,n>5}\end{array}\right.$.

点评 本题考查了数列的求和,绝对值数列的化简运算的应用及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在一次案件中,公民D谋杀致死.嫌疑犯A、B、C对簿公堂.嫌疑犯A说:“我没有去D家,我和C去了B家”;嫌疑犯B说:“C去了A家,也去了D家”;嫌疑犯C说:“我没去D家”.由此推断嫌疑最大的是(  )
A.AB.BC.CD.A和C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U={1,2,3,4,5,6},若A∪B={1,2,3,4,5},A∩B={3,4,5},则∁UA可能是(  )
A.{6}B.{4}C.{3}D.{1,2,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,sinB+sin(A-B)=sinC是sinA=$\frac{{\sqrt{3}}}{2}$的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线经过点B(-1,0)、C(3,0),交y轴于点A(0,3).
(1)求此抛物线的解析式;
(2)抛物线第一象限上有一动点M,过点M作MN⊥x轴,垂足为N,请求出MN+2ON的最大值,及此时点M坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在各项均为正数的等比数列{an}中,若a5•a6=27,则log3a1+log3a2+…+log3a10=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率为$\frac{\sqrt{6}}{3}$,直线l过点(-1,0)交椭圆E于A、B两点,O为坐标原点.
(1)求椭圆E的方程;
(2)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={-1,a},B={3a,b},若A∪B={-1,0,1},则a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的焦点坐标是F1(-1,0),F2(1,0),过点F2垂直于长轴的直线交椭圆与P,Q两点,且|PQ|=3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知A(2,0),B(0,$\sqrt{3}$),C为椭圆上在第一象限的一点,O为坐标原点,求四边形OACB面积的最大值.

查看答案和解析>>

同步练习册答案