精英家教网 > 高中数学 > 题目详情

如图,设ABCD是空间四边形,AB=ADCB=CD,求证:BDAC

 

答案:
解析:

证明:设BD的中点为K,连结AKCKAB=ADKBD中点,

AKBD

同理CKBD,且AK∩KC=K

BD平面AKC

BD垂直于平面AKC内的所有直线

BDAC

点评:证线面垂直,需先有线线垂直,而等腰三角形底边的中线垂直于底边是我们常常遇到的一种类型做这种类型的题时,应注意抓住这一点另一方面,线面垂直定义的逆命题是真命题,可作为线面垂直的一个性质来应用

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由二个相同的矩形ABCD和EFGH构成的面积为200 m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如△DQH等)上铺草坪,造价为80元/m2
(1)设总造价为S元,AD长为xm,试建立S与x的函数关系;
(2)当x为何值时,S最小?并求这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示为某风景区设计建造的一个休闲广场,广场的中间造型的平面图是由两个相同的矩形ABCD和EFGH构成对称的十字形区域,十字形区域面积为2000m2,计划在正方方形MNPQ上建一座“观景花坛”,造价为每平方4100元,在四个相同的矩形上(图中阴影部分)铺石材地坪,价格为每平方110元,再在四个空角(如△DQH等)上铺草坪,价格为每平方80元.设AD长为xm,DQ长为ym.
(I)试找出x与y满足的等量关系式;
(Ⅱ)若该广场的占地面积不超过2800m2,求x的取值范围;
(Ⅲ)求该广场的总造价的最小值及此时AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形ABCD和EFGH构成的面积为200 m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如ΔDQH等)上铺草坪,造价为80元/m2

设总造价为S元,AD长为xm,试建立S与x的函数关系;

当x为何值时,S最小?并求这个最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示为某风景区设计建造的一个休闲广场,广场的中间造型的平面图是由两个相同的矩形ABCD和EFGH构成对称的十字形区域,十字形区域面积为2000m2,计划在正方方形MNPQ上建一座“观景花坛”,造价为每平方4100元,在四个相同的矩形上(图中阴影部分)铺石材地坪,价格为每平方110元,再在四个空角(如△DQH等)上铺草坪,价格为每平方80元.设AD长为xm,DQ长为ym.
(I)试找出x与y满足的等量关系式;
(Ⅱ)若该广场的占地面积不超过2800m2,求x的取值范围;
(Ⅲ)求该广场的总造价的最小值及此时AD的长.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省无锡市高一(下)期末数学试卷(解析版) 题型:解答题

如图所示为某风景区设计建造的一个休闲广场,广场的中间造型的平面图是由两个相同的矩形ABCD和EFGH构成对称的十字形区域,十字形区域面积为2000m2,计划在正方方形MNPQ上建一座“观景花坛”,造价为每平方4100元,在四个相同的矩形上(图中阴影部分)铺石材地坪,价格为每平方110元,再在四个空角(如△DQH等)上铺草坪,价格为每平方80元.设AD长为xm,DQ长为ym.
(I)试找出x与y满足的等量关系式;
(Ⅱ)若该广场的占地面积不超过2800m2,求x的取值范围;
(Ⅲ)求该广场的总造价的最小值及此时AD的长.

查看答案和解析>>

同步练习册答案