精英家教网 > 高中数学 > 题目详情
1.设(1+i)x=1+yi,x,y∈R,则|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵(1+i)x=1+yi,x,y∈R,∴x+ix=1+yi,
∴x=1,x=y,
∴x=y=1.
则|x+yi|=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$.
故选:B.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知奇函数f(x),且f(a)=11,则f(-a)=-11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{4}$=1的焦距为6,则m的值是(  )
A.6或2B.5C.1或9D.3或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零点之和等于(  )
A.-10B.-8C.-6D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:x2+y2-2x-4y-20=0及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的弦长的最小值及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点A作斜率为-1的直线,该直线与E的渐近线交于B,C两点,若$\overrightarrow{BC}+2\overrightarrow{BA}$=$\overrightarrow 0$,则双曲线E的渐近线方程为(  )
A.y=±$\sqrt{3}$xB.y=±4xC.y=±$\sqrt{2}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.当钝角△ABC的三边a,b,c是三个连续整数时,则△ABC外接圆的半径为$\frac{{8\sqrt{15}}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.扇形的周长是20,当扇形的圆心角为2弧度时扇形的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三角形两边之差为2,它们的夹角正弦值为$\frac{4}{5}$,面积为14,那么这两边长分别是(  )
A.3和5B.4和6C.6和8D.5和7

查看答案和解析>>

同步练习册答案