精英家教网 > 高中数学 > 题目详情
9.函数$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零点之和等于(  )
A.-10B.-8C.-6D.-4

分析 把函数$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的零点转化为g(x)=$\frac{1}{x+1}$与h(x)=-2sinπx的交点横坐标,画出图形,数形结合得答案.

解答 解:函数$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的零点,就是方程$\frac{1}{x+1}+2sinπx=0(-5≤x≤2且x≠-1)$的根,
即方程$\frac{1}{x+1}=-2sinπx$的根,
令g(x)=$\frac{1}{x+1}$,h(x)=-2sinπx,
作出两个函数的图象如图:

由图可知,g(x)=$\frac{1}{x+1}$与h(x)=-2sinπx的交点个数为8个,
由对称性可知,函数$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零点之和为-2×4=-8.
故选:B.

点评 本题考查根的存在性与根的个数判断,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知B=45°,b=2.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}lg|x-2|(x≠2)\\ 1(x=2)\end{array}\right.$若关于x的方程[f(x)]2+b•f(x)+c=0恰有5个不同的实数解x1、x2、x3、x4、x5,则f(x1+x2+x3+x4+x5)等于(  )
A.0B.1C.lg4D.3lg2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知焦点在x轴上的椭圆E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{{b}^{2}}$=1(b>0)
(1)若0<b≤2,求离心率e的取值范围;
(2)椭圆E内含圆C:x2+y2=$\frac{8}{3}$.圆C的切线l与椭圆E交于A,B两点,满足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O为坐标原点).
①求b2的值;
②求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x|,g(x)=m-|x-3|.
(1)解关于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求证:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等腰直角三角形的直角边长为1,则绕直角边旋转一周所形成的几何体的体积为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设(1+i)x=1+yi,x,y∈R,则|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow{b}$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)图象的一条对称轴为x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$,且$α,β∈({-\frac{π}{2},\frac{π}{2}})$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设α为第二象限角,则$\frac{sinα}{cosα}$•$\sqrt{\frac{1}{si{n}^{2}a}-1}$=-1.

查看答案和解析>>

同步练习册答案