精英家教网 > 高中数学 > 题目详情
11.已知等差数列{an}的公差d≠0,且a1,a3,a9构成等比数列{bn}的前3项,则$\frac{{{a_1}+{a_3}+{a_9}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{13}{16}$;又若d=2,则数列{bn}的前n项的和Sn=3n-1.

分析 由题意可得(a1+2d)2=a1(a1+8d),可得a1=d,进而an=nd,由等差数列的通项公式代入化简可得$\frac{{{a_1}+{a_3}+{a_9}}}{{{a_2}+{a_4}+{a_{10}}}}$的值;
可得等比数列{bn}的首项为2,公比为3,代入求和公式计算可得.

解答 解:由题意a1,a3,a9构成等比数列{bn}的前3项,
∴a32=a1a9,∴(a1+2d)2=a1(a1+8d),
∴a1=d,∴an=nd,
∴$\frac{{{a_1}+{a_3}+{a_9}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{(1+3+9)d}{(2+4+10)d}$=$\frac{13}{16}$;
当d=2时,a1=2,a3=6,a9=18,
∴等比数列{bn}的首项为2,公比为3,
∴数列{bn}的前n项的和Sn=$\frac{2(1-{3}^{n})}{1-3}$=3n-1
故答案为:$\frac{13}{16}$;3n-1

点评 本题考查等差数列的求和公式,涉及等比数列的求和公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x>0}\\{a{x}^{2}+x,x<0}\end{array}\right.$ 是奇函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解方程:x4+23x2-24=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.己知集合M={x|x>1},集合N={x|x2-2x<0},则M∩N等于(  )
A.{x|1<x<2}B.{x|0<x<l}C.{x|0<x<2}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x1,x2是方程(x-1)2=-1的两相异根,当x1=1-i(i为虚数单位)时,则x${\;}_{2}^{2}$为(  )
A.-2iB.1+iC.2iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式|x-1|+|x-5|≤log2a(其中a>0).
(1)当a=64时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+b的图象过点(1,3)和(0,2).
(1)试确定函数f(x)的解析式;
(2)若关于x的方程|f(x)-2|=m有两个不同解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)为奇函数,当x≥0时,f(x)=-x2+2x,则x<0时,f(x)的解析式为f(x)=x2+2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{x-2}{x+1}$在区间[1,2)上的值域为(  )
A.[0,$\frac{1}{2}$]B.[-$\frac{1}{2}$,0]C.(0,$\frac{1}{2}$]D.[-$\frac{1}{2}$,0)

查看答案和解析>>

同步练习册答案