精英家教网 > 高中数学 > 题目详情
8.已知数列{an}是等差数列,且a2+a5+a8=15,则S9=45.

分析 由题意和等差数列的性质可得a8,由求和公式和性质可得S9=9a5,代值计算可得.

解答 解:∵数列{an}是等差数列,且a2+a5+a8=15,
∴a2+a5+a8=3a8=15,解得a8=5,
∴S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=$\frac{9×2{a}_{5}}{2}$=9a5=45,
故答案为:45.

点评 本题考查等差数列的求和公式和等差数列的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}a{x^2}$+2x,g(x)=lnx.
(1)设函数F(x)=f(x)-g(x),若F(x)在$[\frac{1}{2},+∞)$上单调递增,求a的取值范围;
(2)是否存在实数a>0,使得方程$\frac{g(x)}{x}$=f′(x)-(2a+1)在区间$(\frac{1}{e},e)$内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\sqrt{3}$sin2x+cos2x-m在[0,$\frac{π}{2}$]上有两个零点x1,x2,则tan(x1+x2)的值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{2}^{kx}}{{4}^{x}+1}$,g(x)=$\frac{3-m}{m•{2}^{x}+2\sqrt{2}}$,且f(x)为偶函数.
(1)求实数k的值;
(2)若函数f(x)与g(x)的图象恰好有一个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边过点P(-4,3),则sinα+cosα的值是(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{7}{5}$D.-$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若△ABC的内角A,B满足$\frac{sinB}{sinA}$=2cos(A+B),则当B取最大值时,角C大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}满足a1=3,an+1=an2-2nan+2,n=1,2,3,…,通过计算a2,a3,a4,试归纳出这个数列的通项公式an=2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若(3x+1)n(n∈N*)的展开式中各项二项式系数的和是128,则n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tan2θ=-2$\sqrt{2}$,且π<2θ<2π,求$\frac{2co{s}^{2}\frac{θ}{2}-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{2})}$的值.

查看答案和解析>>

同步练习册答案