精英家教网 > 高中数学 > 题目详情
(2013•江苏一模)在平面直角坐标系xOy中,A(1,0),函数y=ex的图象与y轴的交点为B,P为函数y=ex图象上的任意一点,则
OP
AB
的最小值
1
1
分析:由题意可得向量的坐标,进而可得
OP
AB
=-x0+ex0,构造函数g(x)=-x+ex,通过求导数可得其极值,进而可得函数的最小值,进而可得答案.
解答:解:由题意可知A(1,0),B(0,1),
AB
=(0,1)-(1,0)=(-1,1),
设P(x0ex0),所以
OP
=(x0ex0),
OP
AB
=-x0+ex0
构造函数g(x)=-x+ex,则g′(x)=-1+ex
令其等于0可得x=0,且当x<0时,g′(x)<0,
当x>0时,g′(x)>0,
故函数g(x)在x=0处取到极小值,
故gmin(x)=g(0)=1,
OP
AB
的最小值为:1
故答案为:1
点评:本题考查平面向量数量积的运算,涉及导数法求函数的最值,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江苏一模)已知cos(75°+α)=
1
3
,则cos(30°-2α)的值为
7
9
7
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且
Sn
Tn
=
2n+1
4n-2
,(n∈N+)则
a10
b3+b18
+
a11
b6+b15
=
41
78
41
78

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知F1,F2是双曲线的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此双曲线上,则此双曲线的离心率为
3
+1
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)若对于给定的正实数k,函数f(x)=
k
x
的图象上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为2,则k的取值范围是
(0,
9
2
(0,
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知全集U={1,2,3,4,5,6},A={1,3,5},B={1,2,3,5},则?U(A∩B)=
{2,4,6}
{2,4,6}

查看答案和解析>>

同步练习册答案