精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2,-1)
b
=(-1,m)
c
=(-1,2)
,若(
a
+
b
)与
c
夹角为锐角,则m取值范围是
3
2
,+∞)
3
2
,+∞)
分析:由题意可得 (
a
+
b
)•
c
>0,且
a
+
b
c
不共线,即(1,-1+m)•(-1,2)>0,且
1
-1
-1+m
2
,由此求得m取值范围.
解答:解:由题意可得 (
a
+
b
)•
c
>0,且
a
+
b
 与 
c
不共线.
∴(1,-1+m)•(-1,2)>0,且
1
-1
-1+m
2

即-1-2+2m>0,且 1-m≠2.  解得 m>
3
2
,m≠-1,
故 m取值范围是(
3
2
,+∞),
故答案为 (
3
2
,+∞).
点评:本题考查两个向量的数量积的定义,数量积公式的应用,两个向量共线的性质,两个向量坐标形式的运算,得到(1,-1+m)•(-1,2)>0,且
1
-1
-1+m
2
,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2,  3),
b
=(-1,  2)
,若m
a
+4
b
a
-2
b
共线,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=( 2,  -3 ),?
b
=( 3,  λ )
,若
a
b
,则λ等于(  )
A、
2
3
B、-2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,4),
b
=(x,1)
,且
a
b
,则x的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(1,k)
,且
a
b
的夹角为锐角,则实数k的取值范围是
k>-2且k≠
1
2
k>-2且k≠
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(-1,x),若(
a
+
b
)与(
a
-
b
)共线,x
=
 

查看答案和解析>>

同步练习册答案