精英家教网 > 高中数学 > 题目详情
(2012•东至县模拟)定义在(0,+∞)上的函数f(x)=x2-alnx,g(x)=x-a
x
,且f(x)在x=1处取极值.
(Ⅰ)确定函数g(x)的单调性.
(Ⅱ)证明:当1<x<e2时,恒有x<
2+lnx
2-lnx
成立.
分析:(Ⅰ)利用f(x)在x=1处取极值,求得a的值,从而可得g(x)=x-2
x
,再求导函数,即可求得g(x)的单调区间;(Ⅱ) 当1<x<e2时,0<lnx<2,要证x<
2+lnx
2-lnx
等价于x(2-lnx)<2+lnx,即lnx>
2(x-1)
1+x
,构造h(x)=lnx-
2(x-1)
1+x
,证明h(x)在区间(1,e2)上为增函数,从而当1<x<e2时,h(x)>h(1)=0,即lnx>
2(x-1)
1+x
,故问题得证.
解答:(Ⅰ)解:函数f(x)=x2-alnx,则f′(x)=2x-
a
x

∵f(x)在x=1处取极值
∴f′(1)=0
∴2-a=0
∴a=2.…(3分)
∴g(x)=x-2
x
,∴g′(x)=1-
1
x

g′(x)=1-
1
x
>0
,可得x>1,由g′(x)=1-
1
x
<0
,可得0x<1,…(…(5分)
所以g(x)在(1,+∞)上是增函数,在(0,1)上是减函数.…(6分)
(Ⅱ)证明:当1<x<e2时,0<lnx<2,要证x<
2+lnx
2-lnx
等价于x(2-lnx)<2+lnx,即lnx>
2(x-1)
1+x

设h(x)=lnx-
2(x-1)
1+x
,则h′(x)=
1
2
-
2(x+1)-2(x-1)
(x+1)2
=
(x-1)2
x(x+1)2
.…(10分)
∴当1<x<e2时,h′(x)>0,
所以h(x)在区间(1,e2)上为增函数.…(12分)
从而当1<x<e2时,h(x)>h(1)=0,即lnx>
2(x-1)
1+x
,故x<
2+lnx
2-lnx
 …(14分).
点评:本题重点考查导数知识的运用,考查函数的单调性,考查利用函数的单调性证明不等式,解题的关键是等价转化,构建新函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知命题p:|x-1|+|x+1|≥3a恒成立,命题q:y=(2a-1)x为减函数,若p且q为真命题,则a的取值范围是
1
2
2
3
]
1
2
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知a,b都是正实数,且a+b=2,求证:
a2
a+1
+
b2
b+1
≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)cso15°cos30°+cos105°sin30°的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知函数f(x)=2cos(ωx+φ)(ω>0)的图象关于直线x=
π
12
对称,f(
π
3
)=0,则ω的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)若a>0,b>0且a+b=2,则下列不等式恒成立的是(  )

查看答案和解析>>

同步练习册答案