精英家教网 > 高中数学 > 题目详情
20.(理) 曲线C:y=x3(x≥0)在点x=1处的切线为l,则由曲线C、直线l及x轴围成的封闭图形的面积是(  )
A.1B.$\frac{1}{12}$C.$\frac{4}{3}$D.$\frac{3}{4}$

分析 确定被积函数与被积区间,求出原函数,即可得到结论.

解答 解:曲线C:y=x3(x≥0)的导数为y′=3x2
在点x=1处的切线斜率为3,切点为(1,1),
则切线的方程为y=3x-2,
y=3x-2与x轴的交点为$(\frac{2}{3},0)$,
所以由曲线C、直线l及x轴围成的封闭图形的面积是
S=${∫}_{0}^{1}$x3dx-${∫}_{\frac{2}{3}}^{1}$(3x-2)dx=$\frac{1}{4}$x4|${\;}_{0}^{1}$-($\frac{3}{2}$x2-2x)|${\;}_{\frac{2}{3}}^{1}$=$\frac{1}{4}$-$\frac{1}{6}$=$\frac{1}{12}$.
故选:B.

点评 本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,在[1,+∞)递减.
(1)求a的值;
(2)求g(x)=a${\;}^{-{x}^{2}-2x}$的值域;
(3)解关于x的不等式:loga(-2x+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的函数,且对任意x,y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=$-\frac{2}{3}$.
(1)证明f(x)在(-∞,+∞)上的单调性.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)当x∈[-2,6]时,解不等式f(x2-3)>f(x)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{1-i}{{{{({1+i})}^2}}}$=(  )
A.$\frac{1}{2}$+$\frac{i}{2}$B.1+$\frac{i}{2}$C.-$\frac{1}{2}$-$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“x>0”是“x2>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={-2,0,2},B={-1,2},则A∩B=(  )
A.B.{2}C.{0}D.{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.设△ABC的三个内角A,B,C的对边分别为a,b,c,且c=$\sqrt{7}$,f(C)=0.
(1)求角C;
(2)若向量$\overrightarrow m=(1,sinA)$与向量$\overrightarrow n=(3,sinB)$共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)=ex-ae-x为奇函数,则$f(x-1)<e-\frac{1}{e}$的解集为(  )
A.(-∞,2)B.(一∞,1)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x∈N+|$\frac{4}{x-4}$∈Z},则集合A中元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案