精英家教网 > 高中数学 > 题目详情
设定义在R上的函数f(x),且f(x)≠0,满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求证:f(x)在R上为单调增函数;
(2)解不等式f(3x-x2)>4;
(3)解方程[f(x)]2+
1
2
f(x+3)=f(2)+1
(1)设x>y,∵f(x+y)=f(x)f(y),∴f(x)=
f(x+y)
f(y)

令x=x-y,代入上式得,f(x-y)=
f(x)
f(y)

∵x>y,∴x-y>0,∵当x>0时,f(x)>1,
∵f(x-y)>1,∴
f(x)
f(y)
>1,则f(x)>f(y),
∴f(x)在R上为单调增函数;
(2)∵f(1)=2,f(x+y)=f(x)f(y),∴f(2)=f(1+1)=f(1)f(1)=4,
由于f(3x-x2)>4,∴f(3x-x2)>f(2),
又∵f(x)在R上为单调增函数,∴3x-x2-2>0,解得1<x<2,
∴不等式的解集是(1,2);
(3)令x=0,y=1代入f(x+y)=f(x)f(y),得f(0+1)=f(0)f(1)=f(1),
∵f(1)=2,∴f(0)=1,
令x=2,y=1代入f(x+y)=f(x)f(y),得f(2+1)=f(2)f(1)=8,即f(3)=8,
∴f(x+3)=f(x)f(3)=8f(x),代入[f(x)]2+
1
2
f(x+3)=f(2)+1
得,
[f(x)]2+4f(x)-5=0,解得f(x)=1或-5,
令y=-x代入f(0)=f(x)f(-x)=1,即f(-x)=
1
f(x)

∵f(x)在R上为单调增函数,f(0)=1;
∴f(x)>0,则f(x)=-5舍去,故f(x)=1,即x=0,
所以所求的方程解是0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解x1、x2、x3,且x1<x2<x3,则x12+x22+x32=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足f(x)•f(x+2)=3,若f(1)=2,则f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数.当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x≠
π
2
时,(x-
π
2
)f′(x)<0
.则函数y=f(x)-cosx在[-3π,3π]上的零点个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),当x∈[-
π
2
π
2
]
时,0<f(x)<1;当x∈(-
π
2
π
2
)
且x≠0时,x•f′(x)<0,则y=f(x)与y=cosx的图象在[-2π,2π]上的交点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则(  )
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步练习册答案