精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB,AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1F.

求证:平面A1EF⊥平面B1BCC1.

证明:已知A1E⊥B1B于E,A1F⊥C1C于F,?

∵B1B∥C1C,∴B1B⊥A1F.?

又A1E∩A1F=A1,?

∴B1B⊥平面A1EF.?

∴平面A1EF⊥平面B1BCC1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由B沿棱柱侧面经过棱C C1到点A1的最短路线长为2
5
,设这条最短路线与CC1的交点为D.
(1)求三棱柱ABC-A1B1C1的体积;
(2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断;
(3)证明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1的侧棱长与底面边长都等于1,A1在底面ABC上的射影D为BC的中点,则侧棱AA1与底面ABC所成角的大小为
 
,此三棱柱的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1中,侧棱A A1⊥底面ABC,AB⊥BC;
(Ⅰ)求证:平面A1BC⊥侧面A1ABB1
(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为
π6
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,过顶点A1作底面ABC的垂线,若垂足为BC的中点,则异面直线AB与CC1成的角的余弦值为
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面所成的角为60°,AB=BC,A1A=A1C=2,AB⊥BC,侧面AA1C1C⊥底面ABC.
(1)证明:A1B⊥A1C1
(2)求二面角A-CC1-B的大小;
(3)求经过A1、A、B、C四点的球的表面积.

查看答案和解析>>

同步练习册答案