精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱ABC-A1B1C1的侧棱与底面所成的角为60°,AB=BC,A1A=A1C=2,AB⊥BC,侧面AA1C1C⊥底面ABC.
(1)证明:A1B⊥A1C1
(2)求二面角A-CC1-B的大小;
(3)求经过A1、A、B、C四点的球的表面积.
分析:此题可利用空间向量做:由于A1O⊥AC,BO⊥AC,A1A=A1C=2故取AC中点为O则A1O⊥AC,BO⊥AC而侧面AA1C1C⊥底面ABC且故可利用面面垂直的性质定理可得A1O⊥OB所以可以OB,OC,OA1所在的直线为x,y,z轴建立空间直角坐标系.
(1)要证明A1B⊥A1C1即证明
A1B
A1C1
即说明
A1B
A1C1
=0即可故需求出
A1B
A1C1
的坐标然后利用平面向量数量积的坐标计算求出
A1B
A1C1
即可.
(2)分别求出面BCC1,面ACC1的法向量m,n然后利用向量的夹角公式cos<
m
n
>=
m
n
|
m
||
n
|
求出<
m
n
>而点B在平面ACC1内的射影O在二面角的面ACC1内故二面角A-CC1-B为锐角所以二面角A-CC1-B的大小为<
m
n
>(cos<
m
n
>>0)或π-<
m
n
>(cos<
m
n
><0).
(3)由于A1A=A1C,AB⊥BC,O为AC的中点故A,B,C三点所在的平面截经过A1、A、B、C四点的球所得的截面为球的小圆而A1O⊥平面ABC故经过A1、A、B、C四点的球的球心在A1O上而三角形A1AC为正三角形故根据对称性可知球心在正三角形A1AC的中心然后利用正三角形的性质求出球的半径再结合球的表面经公式即可得解.
解答:解:取AC中点为O,由A1A=A1C,AB=BC,知A1O⊥AC,BO⊥AC,
又平面AA1C1C⊥平面ABC,所以A1O⊥OB.
建立如图所示的坐标系O-xyz,则A(0,-1,0),B(1,0,0),
A1(0,0,
3
),C(0,1,0).
(1)∵
A1B
=(1,0,-
3
),
A1C1
=
AC
=(0,2,0)
A1B
A1C1
=0
∴A1B⊥A1C1
(2)设
m
=(x,y,z)为面BCC1的一个法向量.
BC
=(-1,1,0),
CC1
=
AA1
=(0,1,
3

m
BC
=
m
CC1
=0,
-x+y=0
y+
3
z=0
取n=(
3
3
,-1).
n
=(1,0,0)是面ACC1的法向量,
∴cos<
m
n
>=
m
n
|
m
||
n
|
=
3
7
=
21
7

由点B在平面ACC1内的射影O在二面角的面ACC1内,知二面角A-CC1-B为锐角,
∴二面角A-CC1-B的大小为arccos
21
7

(3)设球心为O1,因为O是△ABC的外心,A1O⊥平面ABC,
所以点O1在A1O上,则O1是正三角形A1AC的中心.
则球半径R=
3
3
A1A=
2
3
3
,球表面积S=4πR2=
16
3
π.
点评:本题主要考察了利用空间向量证明线线垂直、求二面角以及求球的表面积,属常考题,较难.解题的关键是正确建立空间直角坐标系然后将线线垂直、二面角问题转化为证明向量垂直,法向量的夹角问题,同时还要求计算一定要准确!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分别是棱CC1,AB中点.
(Ⅰ)求证:CN⊥平面ABB1A1
(Ⅱ)求证:CN∥平面AMB1
(Ⅲ)求三棱锥B1-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足
A1P
A1B1

(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角最大值的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,点P在直线A1B1上,且
A1P
A1B1

(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点P,使得平面PMN与平面ABC所成的二面角为30°,若存在,试确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的所有棱长均为2,且A1A⊥底面ABC,D为AB的中点,G为△ABC1的重心,则|
CG
|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.
(1)求证:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1与平面ABC所成的角.

查看答案和解析>>

同步练习册答案