分析 由正弦定理,三角形内角和定理,诱导公式,两角和的正弦函数公式化简已知等式可得sinC=4sin2C,结合C为锐角,可求sinC,进而利用同角三角函数基本关系式可求cosC的值.
解答 解:∵acosB=4csinC-bcosA,
∴由正弦定理可得:sinAcosB+sinBcosA=4sin2C,
又∵sinAcosB+sinBcosA=sin(A+B)=sinC,
∴sinC=4sin2C,
∵C为锐角,sinC>0,cosC>0,
∴sinC=$\frac{1}{4}$,cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{\sqrt{15}}{4}$.
故答案为:$\frac{\sqrt{15}}{4}$.
点评 本题主要考查了正弦定理,三角形内角和定理,诱导公式,两角和的正弦函数公式,同角三角函数基本关系式在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 6 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com