精英家教网 > 高中数学 > 题目详情
两等差数列{an},{bn}的前n项和分别为Sn,Tn,若
Sn
Tn
=
2n+3
3n+1
,则
a7
b7
=(  )
分析:由等差数列的性质和求和公式可得
a7
b7
=
a1+a13
b1+b13
=
S13
T13
,代入已知计算可得.
解答:解:由等差数列的性质可得
a7
b7
=
2a7
2b7
=
a1+a13
b1+b13
=
13(a1+a13)
2
13(b1+b13)
2
=
S13
T13
=
2×13+3
3×13+1
=
29
40

故选C
点评:本题考查等差数列的性质和求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两等差数列{an},{bn}的前n项和分别为Sn,Tn,且
Sn
Tn
=
2n+1
n+2
,则
a8
b7
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an}和{bn},前n项和分别为Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,则
a2+a20
b7+b15
=
149
24
149
24

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an},{bn},前n项和分别为Sn、Tn
Sn
Tn
=
7n+5
n+3
,则
a7
b7
=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an}、{bn}的前n项和的比
Sn
Tn
=
5n+3
2n+7
,则
a5
b5
的值是
48
25
48
25

查看答案和解析>>

科目:高中数学 来源: 题型:

若两等差数列{an}、{bn}的前n项和分别为sn,sn′,且
sn
s
/
n
=
2n-1
3n+8
,则
a5
b5
的值为
 

查看答案和解析>>

同步练习册答案