精英家教网 > 高中数学 > 题目详情
(2010•眉山一模)若半径为1的球面上两点A、B间的球面距离为
π
2
,则球心到过A、B两点的平面的距离最大值为(  )
分析:由球截面圆的性质,当截面是以AB为直径的圆时,球心到过A、B两点的平面的距离最大.设D为AB中点,OD即为所求.
解答:解:两点A、B间的球面距离为
π
2
,∴∠AOB=
π
2
,.设过A、B两点的球截面为圆C,由球截面圆的性质OC为球心到过A、B两点的平面的距离.D为AB中点,则OC≤OD,当且仅当C,D重合时取等号.在等腰直角三角形AOB中,OD=
2
2

故选C
点评:本题考查球面距离的概念,点面距的计算.分析出何时区最大值是关键,考查了空间想象能力、推理论证、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•眉山一模)“x≥3”是“x>2”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•眉山一模)集合{x∈z|0<|x|<3}的真子集的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•眉山一模)若函数y=f(x)的值域是[
1
2
,3]
,则函数F(x)=f(x)-
1
f(x)
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•眉山一模)设f(x)=e2x-2x,则
lim
x→0
f′(x)
ex-1
的值为(  )

查看答案和解析>>

同步练习册答案