精英家教网 > 高中数学 > 题目详情
(2012•安庆二模)已知集合{b}={x∈R|ax2-4x+1=0,a,b∈R}则a+b=(  )
分析:由集合{b}={x∈R|ax2-4x+1=0,a,b∈R},a=0,或△=16-4a=0.由此进行分类讨论,能求出a+b的值.
解答:解:∵集合{b}={x∈R|ax2-4x+1=0,a,b∈R},
∴a=0,或△=16-4a=0.
当a=0时,{b}={x|-4x+1=0}={
1
4
},即b=
1
4
,a+b=
1
4

当△=16-4a=0时,a=4,
{b}={x|4x2-4x+1=0}={
1
2
},,即b=
1
2
,a+b=
9
2

故选D.
点评:本题考查集合中元素的性质,是基础题.解题时要认真审题,仔细解答,注意不要遗漏a=0的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安庆二模)复数
1+7i
i
的共轭复数是a+bi(a,b∈R),i是虚数单位,则ab的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则曲线
x=
7
cosφ
y=
7
sinφ
(φ为参数,φ∈R)上的点到曲线ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)函数f(x)的图象如图所示,已知函数F(x)满足F′(x)=f(x),则F(x)的函数图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)设(2
3x
-1)n
的展开式的各项系数之和为M,二项式系数之和为N,若M,8,N三数成等比数列,则展开式中第四项为
-160x
-160x

查看答案和解析>>

同步练习册答案