(本小题满分10分)已知函数
.
(1) 求
的定义域;(2)判断
的奇偶性并证明;
(1)
,
,
;(2)见解析。
【解析】
试题分析:(1)∵
∴
或
,∴定义域为
,
,
.---5分
(2)由(1)知函数的定义域为
,
,
,关于原点对称,
又
,∴
为奇函数.----10分
考点:本题考查函数定义域的求法;函数奇偶性的判断及证明;分式不等式的解法。
点评:在函数奇偶性的定义中,有两个必备条件:一是定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;二是判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化判断奇偶性的等价等量关系式为f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立,这样能简化计算。
科目:高中数学 来源: 题型:
|
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com