精英家教网 > 高中数学 > 题目详情
已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.
考点:二次函数在闭区间上的最值,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)由条件可得二次函数的图象的对称轴为x=1,可设函数f(x)=a(x-1)2+2,a<0.根据f(-2)=-16,求得a的值,可得f(x)的解析式.
(2)分当t≥1时和当0<t<1时两种情况,分别利用函数f(x)的单调性,求得函数的最大值.
解答: 解:(1)∵已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2,
故函数的图象的对称轴为x=1,
可设函数f(x)=a(x-1)2+2,a<0.
根据f(-2)=9a+2=-16,求得a=-2,
故f(x)=-2(x-1)2+2=-2x2+4x.
(2)当t≥1时,函数f(x)在[t,t+1]上是减函数,
故最大值为f(t)=-2t2+4t,
当0<t<1时,函数f(x)在[t,1]上是增函数,在[1,t+1]上是减函数,
故函数的最大值为f(1)=2.
综上,fmax(x)=
2 ,0<t<1
-2t2+4t , t≥1
点评:本题主要考查二次函数的性质,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1037和425的最大公约数是(  )
A、51B、17C、9D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1+2a2+22a3+…+2n-1an=
n
2
,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
1
log
1
2
an
cn=bnbn+1
,记Sn=c1+c2+…+cn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线上两点A,B的坐标分别为(
9
4
,5),(3,-4
2
)

(Ⅰ)求双曲线的标准方程;
(Ⅱ)写出双曲线的焦点坐标,实轴长,虚轴长,离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地机动车驾照考试规定:每位考试者在一年内最多有3次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第三次为止,如果小王决定参加驾照考试,设他一年中三次参加考试通过的概率依次为0.6,0.7,0.8.
(Ⅰ)求小王在一年内领到驾照的概率;
(Ⅱ)求在一年内小王参加驾照考试次数ξ的分布列和ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+by+1=0,(a,b不同时为0),l2:(a-2)x+y+a=0,
(1)若b=0且l1⊥l2,求实数a的值;
(2)当b=3且l1∥l2时,求直线l1与l2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M与两个定点O(0,0),A(3,0)的距离的比为
1
2
,点M得轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)过原点且倾斜角为135°的直线交曲线C于A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机询问110名性别不同的大学生是否爱好某项运动,其中60名男大学生中有40人爱好此项运动,女大学生中有20人爱好此项运动,能不能有99%以上的把握认为“爱好该项运动与性别有关”?
参考数据 当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当Χ2>2.706时,有90%的把握判定变量A,B有关联;
当Χ2>3.841时,有95%的把握判定变量A,B有关联;
当Χ2>6.635时,有99%的把握判定变量A,B有关联.
Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l:ax+y-3=0与x轴相交于点A,与y轴相交于点B,且以坐标原点为圆心以
3
为半径的圆与直线l相切,则△AOB面积为
 

查看答案和解析>>

同步练习册答案