精英家教网 > 高中数学 > 题目详情
(2010•合肥模拟)已知中心在原点,焦点在x轴上的双曲线的一条渐近线的方程为y=
1
2
x
,则此双曲线的离心率为(  )
分析:由条件可知a和b的关系,利用c=
b2+a2
进而求得a和c的关系式,则双曲线的离心率可得.
解答:解:由题意
b
a
=
1
2
,∴
c2-a2
a2
=
1
4
,∴e=
5
2
,故选C.
点评:本题主要考查了双曲线的简单性质.考查了学生对双曲线方程基础知识的掌握和运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)过抛物线y2+8x=0的焦点且倾斜角为45°的直线l与曲线C:x2+y2-2y=0相交所得的弦的弦长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)i是虚数单位,复数z=i2010+
2
1+i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)设集合M={x|(x+6)(x-1)<0},N={x|2x<1},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知向量
a
=(2cosx,sinx),
b
=(
1
2
3
)
f(x)=
a
b
,下面关于的说法中正确的是(  )

查看答案和解析>>

同步练习册答案