精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)是单调递减,若数列{an}是等差数列,且a3<0,则f(a1)+f(a2)+f(a3)+f(a4)+f(a5)的值
A.恒为正数B.恒为负数C.恒为0D.可正可负
A

由题设知a2+a4=2a3<0,a1+a5=2a3<0,x≥0,f(x)单调递减,所以在R上,f(x)都单调递减,因为f(0)=0,所以x≥0时,f(x)<0,x<0时,f(x)>0,由此能够导出f(a1)+f(a2)+f(a3)+f(a4)+f(a5)的值恒为正数
解:∵函数f(x)是定义在R上的奇函数,
且当x≥0时,f(x)单调递减,
数列{an}是等差数列,且a3<0,
∴a2+a4=2a3<0,
a1+a5=2a3<0,
x≥0,f(x)单调递减,
所以在R上,f(x)都单调递减,
因为f(0)=0,
所以x≥0时,
f(x)<0,x<0时,f(x)>0,
∴f(a3)>0
∴f(a1)+f(a5)>0,
∴f(a2)+f(a4)>0.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数有4个零点,则实数的取值范围是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的图像的对称中心为,则实数的值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数f(x)满足对任意实数xy都有fx+y)=fx)+fy)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)证明:对一切大于1的正整数t,恒有ft)>t;
(3)试求满足ft)=t的整数的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,当恒成立的a的最小值为k,存在n个
正数,且,任取n个自变量的值

(I)求k的值;
(II)如果
(III)如果,且存在n个自变量的值,使,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一元二次方程的一个根在-2与-1之间,另一个根在1与2之间,试求点的轨迹及的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像与轴的交点至少有一个在原点的右侧,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一元二次方程解为,则分解因式    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

:函数的零点个数是(     )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案