精英家教网 > 高中数学 > 题目详情
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD=1.
(1)求异面直线BF与DE所成的角的大小;
(2)求二面角A﹣CD﹣E的余弦值.  
解:(1)由题设知,BF∥CE,
所以∠CED(或其补角)为异面直线BF与DE所成的角.
设P为AD的中点,连接EP,PC.
因为FE=∥AP,所以FA=∥EP,同理AB=∥PC.
又FA⊥平面ABCD,所以EP⊥平面ABCD.
而PC,AD都在平面ABCD内,
故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD设FA=a,
则EP=PC=PD=a,CD=DE=EC= a,故∠CED=60°.
所以异面直线BF与DE所成的角的大小为60°.
(2)取CD的中点Q,连接PQ,EQ
由PC=PD,CE=DE
∴PQ⊥CD,EQ⊥CD
∴∠EQP为二面角A﹣CD﹣E的平面角,
由ED=CD= a,
在等边△ECD中EQ= a
在等腰Rt△CPD中,PQ= a
在Rt△EPQ中,cos∠EQP= .
故二面角A﹣CD﹣E的余弦值为 .  
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=
3
,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且BF=
1
2
,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在五面体ABC-DEF中,四边形BCFE 是矩形,DE⊥平面BCFE.
求证:(1)BC⊥平面ABED;
(2)CF∥AD.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省鞍山一中高考数学五模试卷(理科)(解析版) 题型:解答题

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学预测试卷2(文科)(解析版) 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

同步练习册答案