16£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$e=\frac{{\sqrt{3}}}{2}$£¬Ô­µãµ½¹ýµãA£¨-a£¬0£©£¬B£¨0£¬b£©
µÄÖ±ÏߵľàÀëÊÇ$\frac{{4\sqrt{5}}}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©É趯ֱÏßlÓëÁ½¶¨Ö±Ïßl1£ºx-2y=0ºÍl2£ºx+2y=0·Ö±ð½»ÓÚP£¬QÁ½µã£®ÈôÖ±Ïßl×ÜÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÊÔ̽¾¿£º¡÷OPQµÄÃæ»ýÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬Çó³ö¸Ã×îСֵ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±ÏßlµÄбÂÊÊÇ·ñ´æÔÚ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß$l£ºy=kx+m£¨k¡Ù¡À\frac{1}{2}£©$£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃÅбðʽΪ0£¬ÔÙÁªÁ¢Ö±Ïß·½³Ì×飬ÇóµÃP£¬QµÄ×ø±ê£¬ÇóµÃPQµÄ³¤£¬Çó³öOPQµÄÃæ»ý£¬»¯¼òÕûÀí£¬¿ÉµÃ×îСֵ£®

½â´ð ½â£º£¨1£©ÒòΪ$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$£¬a2-b2=c2£¬ËùÒÔa=2b£®
ÒòΪԭµãµ½Ö±ÏßAB£º$\frac{x}{-a}+\frac{y}{b}=1$µÄ¾àÀë$d=\frac{ab}{{\sqrt{{a^2}+{b^2}}}}=\frac{{4\sqrt{5}}}{5}$£¬
½âµÃa=4£¬b=2£®
¹ÊËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£®
£¨2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßlΪx=4»òx=-4£¬¶¼ÓÐ${S_{¡÷OPQ}}=\frac{1}{2}¡Á4¡Á4=8$£®
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß$l£ºy=kx+m£¨k¡Ù¡À\frac{1}{2}£©$£¬
ÓÉ$\left\{\begin{array}{l}y=kx+m\\{x^2}+4{y^2}=16\end{array}\right.$ÏûÈ¥y£¬¿ÉµÃ£¨1+4k2£©x2+8kmx+4m2-16=0£®
ÒòΪֱÏßl×ÜÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔ¡÷=64k2m2-4£¨1+4k2£©£¨4m2-16£©=0£¬¼´m2=16k2+4£®¢Ù
ÓÖÓÉ$\left\{\begin{array}{l}y=kx+m\\ x-2y=0\end{array}\right.$¿ÉµÃ$P£¨\frac{2m}{1-2k}£¬\frac{m}{1-2k}£©$£»
ͬÀí¿ÉµÃ$Q£¨\frac{-2m}{1+2k}£¬\frac{m}{1+2k}£©$£®
ÓÉÔ­µãOµ½Ö±ÏßPQµÄ¾àÀëΪ$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$ºÍ$|PQ|=\sqrt{1+{k^2}}|{x_P}-{x_Q}|$£¬
¿ÉµÃ${S_{¡÷OPQ}}=\frac{1}{2}|PQ|•d=\frac{1}{2}|m||{x_P}-{x_Q}|=\frac{1}{2}•|m||{\frac{2m}{1-2k}+\frac{2m}{1+2k}}|=|{\frac{{2{m^2}}}{{1-4{k^2}}}}|$£®¢Ú
½«¢Ù´úÈë¢ÚµÃ£¬${S_{¡÷OPQ}}=|{\frac{{2{m^2}}}{{1-4{k^2}}}}|=8\frac{{|{4{k^2}+1}|}}{{|{4{k^2}-1}|}}$£®
µ±${k^2}£¾\frac{1}{4}$ʱ£¬${S_{¡÷OPQ}}=8£¨\frac{{4{k^2}+1}}{{4{k^2}-1}}£©=8£¨1+\frac{2}{{4{k^2}-1}}£©£¾8$£»
µ±$0¡Ü{k^2}£¼\frac{1}{4}$ʱ£¬${S_{¡÷OPQ}}=8£¨\frac{{4{k^2}+1}}{{1-4{k^2}}}£©=8£¨-1+\frac{2}{{1-4{k^2}}}£©$£®
Òò$0¡Ü{k^2}£¼\frac{1}{4}$£¬Ôò0£¼1-4k2¡Ü1£¬$\frac{2}{{1-4{k^2}}}¡Ý2$£¬
ËùÒÔ${S_{¡÷OPQ}}=8£¨-1+\frac{2}{{1-4{k^2}}}£©¡Ý8$£¬
µ±ÇÒ½öµ±k=0ʱȡµÈºÅ£®ËùÒÔµ±k=0ʱ£¬S¡÷OPQµÄ×îСֵΪ8£®
×ÛÉÏ¿ÉÖª£¬µ±Ö±ÏßlÓëÍÖÔ²CÔÚËĸö¶¥µã´¦ÏàÇÐʱ£¬¡÷OPQµÄÃæ»ýÈ¡µÃ×îСֵ8£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖÊ£ºÀëÐÄÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ룬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×îСֵ£¬×¢ÒâÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬×¢ÒâÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®²»µÈʽ×é$\left\{\begin{array}{l}x¡Ü0\\ x+2y+2¡Ý0\\ y-x-2¡Ü0\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=sin2£¨¦Øx£©-$\frac{1}{2}$£¨¦Ø£¾0£©µÄÖÜÆÚΪ¦Ð£¬Èô½«ÆäͼÏóÑØxÖáÏòÓÒÆ½ÒÆa¸öµ¥Î»£¨a£¾0£©£¬ËùµÃͼÏó¹ØÓÚÔ­µã¶Ô³Æ£¬ÔòʵÊýaµÄ×îСֵΪ£¨¡¡¡¡£©
A£®¦ÐB£®$\frac{3¦Ð}{4}$C£®$\frac{¦Ð}{2}$D£®$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªa£¬b¡ÊR£¬ÇÒa+2b=4£¬Ôò$\sqrt{3}$a+3bµÄ×îСֵΪ£¨¡¡¡¡£©
A£®2$\sqrt{3}$B£®6C£®3$\sqrt{3}$D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¼ÆË㣺${£¨\frac{16}{81}£©^{-0.75}}-lg25-2lg2$=$\frac{11}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Éèx0ÊǺ¯Êýf£¨x£©=2x+xµÄÁãµã£¬ÇÒx0¡Ê£¨k£¬k+1£©£¬k¡ÊZ£¬Ôòk=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®º¯Êýf£¨x£©=${log_2}£¨x+4£©-{2^x}$µÄÁãµãµÄÇé¿öÊÇ£¨¡¡¡¡£©
A£®½öÓÐÒ»¸ö»ò0¸öÁãµãB£®ÓÐÁ½¸öÕýÁãµã
C£®ÓÐÒ»ÕýÁãµãºÍÒ»¸ºÁãµãD£®ÓÐÁ½¸ö¸ºÁãµã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¾Ý˵ΰ´óµÄ°¢»ùÃ×µÂËÀÁËÒԺ󣬵оü½«ÁìÂíÈûÀ­Ë¹¸øËû½¨ÁËÒ»¿éű®£®ÔÚű®ÉÏ¿ÌÁËÒ»¸öÈçͼËùʾµÄͼ°¸£¬Í¼°¸ÖÐÇòµÄÖ±¾¶ÓëÔ²Öùµ×ÃæµÄÖ±¾¶ºÍÔ²ÖùµÄ¸ßÏàµÈ£¬Ô²×¶µÄ¶¥µãÔÚÔ²ÖùÉϵ×ÃæµÄÔ²ÐÄ£¬Ô²×¶µÄµ×ÃæÊÇÔ²ÖùµÄϵ×Ãæ£®ÊÔ¼ÆËã³öͼÐÎÖÐÔ²×¶¡¢Çò¡¢Ô²ÖùµÄÌå»ý±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªµãA£¨-3£¬2£©£¬B£¨1£¬4£©£¬PΪÏß¶ÎABµÄÖе㣬ÔòÏòÁ¿$\overrightarrow{BP}$µÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-2£¬-1£©B£®£¨2£¬1£©C£®£¨4£¬2£©D£®£¨-8£¬-4£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸